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Nomenclature

D,, D, = planar and nonplanar parts of the incremental
oscillatory downwash factor

e = box semispan

k, = reduced frequency based on box semichord or
mean wing semichord

M = Mach number

P"(x) = polynomial of degree n in x

Ax = box chord

¥, 2 = coordinates of collocation point in sending panel
coordinate system

mn = spanwise coordinate of sending point

Introduction

HE subsonic doublet lattice method,"” used in the calcu-
lation of unsteady air loads on an aircraft, can be regarded
as an extension of the vortex lattice method, which is used for
steady load calculation. The downwash factors are calculated
as the sum of the steady component, identical to that of the
vortex lattice method, and an unsteady component. Whereas
the steady component is exact, the unsteady component is ap-
proximated. The approximation in the unsteady component
places a restriction on the doublet lattice method in terms of
box aspect ratio, which does not apply to the vortex lattice
method. The incremental oscillatory downwash factor is di-
vided into a planar and a nonplanar part.” Each part is ex-
pressed as an integral over the length of the doublet line, of
which the integrand is the planar or nonplanar kernel numer-
ator divided by the square or fourth power, respectively, of the
radial distance between the sending and receiving points.
These integrals cannot be evaluated analytically, and the usual
way of evaluating them is to make polynomial approximations
to the numerators of the integrands and integrating the result-
ing expressions analytically. To obtain accurate results, the box
aspect ratio must be limited. Reference 2, which describes the
use of parabolic approximations, suggests using box aspect
ratios not much greater than unity, whereas Ref. 3 suggests
using box aspect ratios of less than three, also for a parabolic
approximation.
Rodden et al.*® described quartic approximations to the ker-
nel numerators and suggested that the higher degree approxi-
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mation may allow the use of aspect ratios of up to 10. To
quantify the integration error in these production methods, it
would be useful to have available a method that will converge
to the correct result in an orderly manner as computational
effort is increased. Increasing the degree of the approximating
polynomials does not have the desired effect. The excursions
between matched points get larger and the results diverge. The
approach presented here is to make a natural cubic spline ap-
proximation to the kernel numerators, followed by analytical
integration over each interval. General integration formulas,
necessitated by the nonsymmetric integration intervals, are
given. Results are presented that indicate that the method con-
verges without difficulty.

General Integration Formulas

The incremental (unsteady) downwash factor is divided into
a planar and a nonplanar part as was done in Ref. 2, but poly-
nomials of arbitrary degree are substituted for the parabolas
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The polynomials are simple to integrate, whereas the method
of partial fractions can be used to integrate the fractions. The
fraction in the nonplanar integrand is expressed in terms of its
partial fractions as
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The first two partial fractions integrate to logarithmic func-
tions, whereas the last two integrate to simple reciprocals. If z
= 0, the result for the planar part is given by
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If z # 0, the planar and nonplanar parts are given by
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The Fortran ATAN2 function can be used to evaluate the
arg function in the preceding expressions. By substituting 7,
= +e and m; = —e, expressions for integrating over the entire
doublet line are obtained.

Spline Approximation

A natural cubic spline through a number of points is a set
of cubic polynomials defined over each interval such that the
first and second derivatives are continuous. At the endpoints,
the second derivative is set equal to zero. It is a simple matter
to make a spline fit instead of a polynomial fit to the numer-
ator, and integrate the resulting set of cubic polynomials. One
complication is that it is desirable to have a matched point at
the center of the doublet line in the case of a collocation point
in the same strip. However, the integration formulas are sin-
gular for a collocation point at the endpoint of the interval. To
avoid this problem, the two central cubic polynomials are re-
placed by a single quartic polynomial that matches the central
three function values and joins the adjacent cubics with the
same conditions as those between cubics, i.e., continuous first
and second derivatives. This method was applied to the case
of a 70-deg swept box of aspect ratio 10, M = 0.8, and &, =
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Fig. 1 Spline approximations to the planar kernel numerator.
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Fig. 2 Unsteady downwash calculated using spline approxima-
tions.

0.25. Spline approximations to the planar kernel numerator
using 5, 9, and 17 points, respectively, are shown in Fig. 1.
The spline fit converges to the original function without dif-
ficulty.

Integrated Results

The fit quality considered in the previous text does not give
an intuitively correct impression of the accuracy of the down-
wash factor because of the weighting introduced by the de-
nominator in the integrands and the principal value of the in-
tegral being taken in the planar case. The convergence
behavior of the present method is illustrated by plotting the
planar downwash factor against box aspect ratio for a 70-deg
swept box, M = 0.8 and k, = 0.25. In Fig. 2, results obtained
using 5-, 9-, 33-, and 129-point spline approximations are
shown. Although many points are required for convergence in
this extreme case, convergence is achieved without difficulty.

Conclusions

The present study has shown that results of high accuracy
can be obtained at the cost of computational effort by using a
spline fit to the kernel numerators and integrating over each
interval analytically. This procedure can be used to quantify
the integration error in production methods. It should however
be noted that eliminating the integration error for a particular
paneling scheme does not yield the fully converged answer for
the problem, nor is it necesary to eliminate the integration error
to determine the fully converged result.
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Nomenclature

= lift coefficient based on wing area

plunge amplitude

reduced frequency based on wing semispan
reduced frequency based on mean wing semichord
Mach number

number of boxes in aerodynamic model

number of chordwise boxes on wing

= wing semispan

a
|

o
I n

Ki

<
I

“ 33
1l

Introduction

HE subsonic doublet lattice method"* (DLM) is com-
monly used for the calculation of unsteady air loads on
aircraft. This method can be regarded as an extension of the
vortex lattice method (VLM), which is used for steady load
calculation. The downwash factors in the DLM are calculated
as the sum of a steady component, identical to that of the
VLM, and an unsteady component. Whereas the steady com-
ponent is exact, the unsteady component is approximated. Both
the VLM and DLM suffer from a discretization error, the error
introduced by dividing a lifting surface into finite panels. The
DLM is much more sensitive to chordwise paneling than the
VLM because of the oscillatory nature of the downwash of a
lifting surface element in unsteady flow. In addition, the DLM
suffers from an integration error, the error resulting from in-
accuracies in the calculation of the unsteady component of the
downwash factors. To obtain acceptably accurate results from
the DLM, application guidelines must be adhered to.
Historically, the application guidelines separated the dis-
cretization and integration errors.>> A minimum number of
chordwise boxes per wavelength is specified to limit the dis-
cretization error, whereas a maximum box aspect ratio is spec-
ified to limit the integration error. Reference 2, which describes
the use of parabolic approximations to the kernel numerators,
suggests using box aspect ratios not much greater than unity
and at least 25 boxes per wavelength (at the wing root). Ref-
erence 3 suggests using box aspect ratios less than three and
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at least 12.5 boxes per wavelength, also for a parabolic ap-
proximation.

For most aeroelastic applications, the combination of these
two conditions dictate a fine spanwise paneling. Therefore, it
was not necessary to address the spanwise paneling require-
ment explicitly. Rodden et al.** described quartic approxima-
tions to the kernel numerators and suggested that the higher
degree approximation may allow the use of aspect ratios of up
to 10. If such high box aspect ratios are used, attention will
have to be given to convergence with respect to spanwise pan-
eling. A minimum number of 50 chordwise boxes per wave-
length (at mid-span) was suggested in Ref. 5, which is signif-
icantly more than what had previously been suggested for the
parabolic approximation.

The guidelines for the number of boxes per wavelength were
arrived at by refining the chordwise paneling and noting when
the results became stationary to within the desired limit. The
higher box aspect ratio limit suggested in Ref. 5 was arrived
at by continuing the refinement of the chordwise paneling and
noting that the results did not deviate from the stationary result.
The discretization and integration errors were not separated in
these studies. In the present study, the two sources of error are
separated using a much more accurate approximation to the
kernel numerators.®

Convergence with Respect to Chordwise Paneling

Results for a two-dimensional case are presented first to get
an indication of the expected convergence behavior of the
DLM in the absence of any spanwise integration error. The
test case is that of an airfoil oscillating in pitch, for which Von
Kéarman and Sears’ gave an analytical closed-form solution.
An incompressible two-dimensional DLM was used to calcu-
late the ratio of the unsteady moment to the steady moment at
k, = 2. Only the contribution of the pitching motion to the
boundary condition was used, as was done in Ref. 7. Results
for 16-1024 chordwise panels are plotted against 1/ in Fig.
1. The real and imaginary parts of the analytical result are
indicated by short horizontal lines drawn onto the vertical axis.
It is seen that the DLM results converge to the analytical result
along approximately straight lines. The DLM results were ex-
trapolated to an infinite number of panels (1/n = 0) from the
last two points of each line and compared to the analytical
result. The relative error, i.e., the magnitude of the difference
divided by the magnitude of the analytical result, is 0.003%.

The AGARD wing and horizontal tail in plunge at M = 0.8
and k., = 1.2 is used to illustrate the convergence behavior,
with respect to chordwise paneling, of the DLM for different
levels of integration error. The wing and tail are divided into
eight strips at 1/6, 1/3, 1/2, 2/3, 5/6, 0.9, and 0.96 fractions of
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Fig. 1 Moment on an airfoil oscillating in pitch.



